Node
{{meta {code_links: [“code/file_server.mjs”]}}}
Node.js
{{quote {author: “Master Yuan-Ma”, title: “The Book of Programming”, chapter: true}
A student asked, ‘The programmers of old used only simple machines and no programming languages, yet they made beautiful programs. Why do we use complicated machines and programming languages?’ Fu-Tzu replied, ‘The builders of old used only sticks and clay, yet they made beautiful huts.’
quote}}
{{index “Yuan-Ma”, “Book of Programming”}}
{{figure {url: “img/chapter_picture_20.jpg”, alt: “Illustration showing a telephone pole with a tangle of wires going in all directions”, chapter: “framed”}}}
{{index “command line”}}
So far, we’ve used the JavaScript language in a single environment: the browser. This chapter and the next one will briefly introduce ((Node.js)), a program that allows you to apply your JavaScript skills outside of the browser. With it, you can build anything from small command line tools to HTTP ((server))s that power dynamic ((website))s.
These chapters aim to teach you the main concepts that Node.js uses and to give you enough information to write useful programs for it. They do not try to be a complete, or even a thorough, treatment of the platform.
{{if interactive
Whereas you could run the code in previous chapters directly on these pages, because it was either raw JavaScript or written for the browser, the code samples in this chapter are written for Node and often won’t run in the browser.
if}}
If you want to follow along and run the code in this chapter, you’ll need to install Node.js version 18 or higher. To do so, go to https://nodejs.org and follow the installation instructions for your operating system. You can also find further ((documentation)) for Node.js there.
Background
{{index responsiveness, input, [network, speed]}}
When building systems that communicate over the network, the way you manage input and ((output))—that is, the reading and writing of data to and from the network and ((hard drive))—can make a big difference in how quickly a system responds to the user or to network requests.
{{index [“asynchronous programming”, “in Node.js”]}}
In such programs, asynchronous programming is often helpful. It allows the program to send and receive data from and to multiple devices at the same time without complicated thread management and synchronization.
{{index “programming language”, “Node.js”, standard}}
Node was initially conceived for the purpose of making asynchronous programming easy and convenient. JavaScript lends itself well to a system like Node. It is one of the few programming languages that does not have a built-in way to do input and output. Thus, JavaScript could be fit onto Node’s rather eccentric approach to network and filesystem programming without ending up with two inconsistent interfaces. In 2009, when Node was being designed, people were already doing callback-based programming in the browser, so the ((community)) around the language was used to an asynchronous programming style.
The node command
{{index “node program”}}
When ((Node.js)) is installed on a system, it provides a program called node
, which is used to run JavaScript files. Say you have a file hello.js
, containing this code:
You can then run node
from the ((command line)) like this to execute the program:
{{index “console.log”}}
The console.log
method in Node does something similar to what it does in the browser. It prints out a piece of text. But in Node, the text will go to the process’s ((standard output)) stream rather than to a browser’s ((JavaScript console)). When running node
from the command line, that means you see the logged values in your ((terminal)).
{{index “node program”, “read-eval-print loop”}}
If you run node
without giving it a file, it provides you with a prompt at which you can type JavaScript code and immediately see the result.
{{index “process object”, “global scope”, [binding, global], “exit method”, “status code”}}
The process
binding, just like the console
binding, is available globally in Node. It provides various ways to inspect and manipulate the current program. The exit
method ends the process and can be given an exit status code, which tells the program that started node
(in this case, the command line shell) whether the program completed successfully (code zero) or encountered an error (any other code).
{{index “command line”, “argv property”}}
To find the command line arguments given to your script, you can read process.argv
, which is an array of strings. Note that it also includes the name of the node
command and your script name, so the actual arguments start at index 2. If showargv.js
contains the statement console.log(process.argv)
, you could run it like this:
{{index [binding, global]}}
All the ((standard)) JavaScript global bindings, such as Array
, Math
, and JSON
, are also present in Node’s environment. Browser-related functionality, such as document
or prompt
, is not.
Modules
{{index “Node.js”, “global scope”, “module loader”}}
Beyond the bindings I mentioned, such as console
and process
, Node puts few additional bindings in the global scope. If you want to access built-in functionality, you have to ask the module system for it.
{{index “require function”}}
Node started out using the ((CommonJS)) module system, based on the require
function, which we saw in Chapter ?. It will still use this system by default when you load a .js
file.
{{index “import keyword”, “ES modules”}}
But today, Node also supports the more modern ES module system. When a script’s filename ends in .mjs
, it is considered to be such a module, and you can use import
and export
in it (but not require
). We will use ES modules in this chapter.
{{index [path, “filesystem”], “relative path”, resolution}}
When importing a module—whether with require
or import
—Node has to resolve the given string to an actual ((file)) that it can load. Names that start with /
, ./
, or ../
are resolved as files, relative to the current module’s path. Here, .
stands for the current directory, ../
for one directory up, and /
for the root of the filesystem. If you ask for "./graph.mjs"
from the file /tmp/robot/robot.mjs
, Node will try to load the file /tmp/robot/graph.mjs
.
{{index “node_modules directory”, directory}}
When a string that does not look like a relative or absolute path is imported, it is assumed to refer to either a built-in ((module)) or a module installed in a node_modules
directory. For example, importing from "node:fs"
will give you Node’s built-in filesystem module. Importing "robot"
might try to load the library found in node_modules/robot/
. It’s common to install such libraries using ((NPM)), which we’ll return to in a moment.
{{index “import keyword”, “Node.js”, “garble example”}}
Let’s set up a small project consisting of two files. The first one, called main.mjs
, defines a script that can be called from the ((command line)) to reverse a string.
{{index reuse, “Array.from function”, “join method”}}
The file reverse.mjs
defines a library for reversing strings, which can be used both by this command line tool and by other scripts that need direct access to a string-reversing function.
{{index “export keyword”, “ES modules”, [interface, module]}}
Remember that export
is used to declare that a binding is part of the module’s interface. That allows main.mjs
to import and use the function.
We can now call our tool like this:
Installing with NPM
{{index NPM, “Node.js”, “npm program”, library}}
NPM, introduced in Chapter ?, is an online repository of JavaScript ((module))s, many of which are specifically written for Node. When you install Node on your computer, you also get the npm
command, which you can use to interact with this repository.
{{index “ini package”}}
NPM’s main use is ((download))ing packages. We saw the ini
package in Chapter ?. We can use NPM to fetch and install that package on our computer.
{{index “require function”, “node_modules directory”, “npm program”}}
After running npm install
, ((NPM)) will have created a directory called node_modules
. Inside that directory will be an ini
directory that contains the ((library)). You can open it and look at the code. When we import "ini"
, this library is loaded, and we can call its parse
property to parse a configuration file.
By default, NPM installs packages under the current directory rather than in a central place. If you are used to other package managers, this may seem unusual, but it has advantages—it puts each application in full control of the packages it installs and makes it easier to manage versions and clean up when removing an application.
Package files
{{index “package.json”, dependency}}
After running npm install
to install some package, you will find not only a node_modules
directory but also a file called package.json
in your current directory. It is recommended to have such a file for each project. You can create it manually or run npm init
. This file contains information about the project, such as its name and ((version)), and lists its dependencies.
The robot simulation from Chapter ?, as modularized in the exercise in Chapter ?, might have a package.json
file like this:
{{index “npm program”, tool}}
When you run npm install
without naming a package to install, NPM will install the dependencies listed in package.json
. When you install a specific package that is not already listed as a dependency, NPM will add it to package.json
.
Versions
{{index “package.json”, dependency, evolution}}
A package.json
file lists both the program’s own ((version)) and versions for its dependencies. Versions are a way to deal with the fact that ((package))s evolve separately, and code written to work with a package as it existed at one point may not work with a later, modified version of the package.
{{index compatibility}}
NPM demands that its packages follow a schema called ((semantic versioning)), which encodes some information about which versions are compatible (don’t break the old interface) in the version number. A semantic version consists of three numbers separated by periods, such as 2.3.0
. Every time new functionality is added, the middle number has to be incremented. Every time compatibility is broken, so that existing code that uses the package might not work with the new version, the first number has to be incremented.
{{index “caret character”}}
A caret character (^
) in front of the version number for a dependency in package.json
indicates that any version compatible with the given number may be installed. For example, "^2.3.0"
would mean that any version greater than or equal to 2.3.0 and less than 3.0.0 is allowed.
{{index publishing}}
The npm
command is also used to publish new packages or new versions of packages. If you run npm publish
in a ((directory)) that has a package.json
file, it will publish a package with the name and version listed in the JSON file to the registry. Anyone can publish packages to NPM—though only under a package name that isn’t in use yet, since it wouldn’t be good if random people could update existing packages.
This book won’t delve further into the details of ((NPM)) usage. Refer to https://npmjs.com for further documentation and a way to search for packages.
The filesystem module
{{index directory, “node:fs package”, “Node.js”, [file, access]}}
One of the most commonly used built-in modules in Node is the node:fs
module, which stands for ((filesystem)). It exports functions for working with files and directories.
{{index “readFile function”, “callback function”}}
For example, the function called readFile
reads a file and then calls a callback with the file’s contents.
{{index “Buffer class”}}
The second argument to readFile
indicates the ((character encoding)) used to decode the file into a string. There are several ways in which ((text)) can be encoded to ((binary data)), but most modern systems use ((UTF-8)). Unless you have reasons to believe another encoding is used, pass "utf8"
when reading a text file. If you do not pass an encoding, Node will assume you are interested in the binary data and will give you a Buffer
object instead of a string. This is an ((array-like object)) that contains numbers representing the bytes (8-bit chunks of data) in the files.
{{index “writeFile function”, “filesystem”, [file, access]}}
A similar function, writeFile
, is used to write a file to disk.
{{index “Buffer class”, “character encoding”}}
Here it was not necessary to specify the encoding—writeFile
will assume that when it is given a string to write, rather than a Buffer
object, it should write it out as text using its default character encoding, which is ((UTF-8)).
{{index “node:fs package”, “readdir function”, “stat function”, “rename function”, “unlink function”}}
The node:fs
module contains many other useful functions: readdir
will give you the files in a ((directory)) as an array of strings, stat
will retrieve information about a file, rename
will rename a file, unlink
will remove one, and so on. See the documentation at https://nodejs.org for specifics.
{{index [“asynchronous programming”, “in Node.js”], “Node.js”, “error handling”, “callback function”}}
Most of these take a callback function as the last parameter, which they call either with an error (the first argument) or with a successful result (the second). As we saw in Chapter ?, there are downsides to this style of programming—the biggest one being that error handling becomes verbose and error prone.
{{index “Promise class”, “node:fs/promises package”}}
The node:fs/promises
module exports most of the same functions as the old node:fs
module but uses promises rather than callback functions.
{{index “synchronous programming”, “node:fs package”, “readFileSync function”}}
Sometimes you don’t need asynchronicity and it just gets in the way. Many of the functions in node:fs
also have a synchronous variant, which has the same name with Sync
added to the end. For example, the synchronous version of readFile
is called readFileSync
.
{{index optimization, performance, blocking}}
Note that while such a synchronous operation is being performed, your program is stopped entirely. If it should be responding to the user or to other machines on the network, being stuck on a synchronous action might produce annoying delays.
The HTTP module
{{index “Node.js”, “node:http package”, [HTTP, server]}}
Another central module is called node:http
. It provides functionality for running an HTTP ((server)).
{{index “listening (TCP)”, “listen method”, “createServer function”}}
This is all it takes to start an HTTP server:
{{index port, localhost}}
If you run this script on your own machine, you can point your web browser at http://localhost:8000/hello to make a request to your server. It will respond with a small HTML page.
{{index “createServer function”, HTTP}}
The function passed as the argument to createServer
is called every time a client connects to the server. The request
and response
bindings are objects representing the incoming and outgoing data. The first contains information about the ((request)), such as its url
property, which tells us to what URL the request was made.
When you open that page in your browser, it sends a request to your own computer. This causes the server function to run and send back a response, which you can then see in the browser.
{{index “200 (HTTP status code)”, “Content-Type header”, “writeHead method”}}
To send something to the client, you call methods on the response
object. The first, writeHead
, will write out the ((response)) ((header))s (see Chapter ?). You give it the status code (200 for “OK” in this case) and an object that contains header values. The example sets the Content-Type
header to inform the client that we’ll be sending back an HTML document.
{{index “writable stream”, “body (HTTP)”, stream, “write method”, “end method”}}
Next, the actual response body (the document itself) is sent with response.write
. You’re allowed to call this method multiple times if you want to send the response piece by piece—for example, to stream data to the client as it becomes available. Finally, response.end
signals the end of the response.
{{index “listen method”}}
The call to server.listen
causes the ((server)) to start waiting for connections on ((port)) 8000. This is why you have to connect to localhost:8000 to speak to this server, rather than just localhost, which would use the default port 80.
{{index “Node.js”, “kill process”}}
When you run this script, the process just sits there and waits. When a script is listening for events—in this case, network connections—node
will not automatically exit when it reaches the end of the script. To close it, press [ctrl]{keyname}-C.
{{index [method, HTTP]}}
A real web ((server)) usually does more than the one in the example—it looks at the request’s ((method)) (the method
property) to see what action the client is trying to perform and looks at the request’s ((URL)) to find out on which resource this action is being performed. We’ll see a more advanced server later in this chapter.
{{index “node:http package”, “request function”, “fetch function”, [HTTP, client]}}
The node:http
module also provides a request
function that can be used to make HTTP requests. However, it is a lot more cumbersome to use than fetch
, which we saw in Chapter ?. Fortunately, fetch
is also available in Node as a global binding. Unless you want to do something very specific, such as processing the response document piece by piece as the data comes in over the network, I recommend sticking to fetch
.
Streams
{{index “Node.js”, stream, “writable stream”, “callback function”, [“asynchronous programming”, “in Node.js”], “write method”, “end method”, “Buffer class”}}
The response object that the HTTP server could write to is an example of a writable stream object, which is a widely used concept in Node. Such objects have a write
method that can be passed a string or a Buffer
object to write something to the stream. Their end
method closes the stream and optionally takes a value to write to the stream before closing. Both of these methods can also be given a callback as an additional argument, which they will call when the writing or closing has finished.
{{index “createWriteStream function”, “writeFile function”, [file, stream]}}
It is possible to create a writable stream that points at a file with the createWriteStream
function from the node:fs
module. You can then use the write
method on the resulting object to write the file one piece at a time rather than in one shot, as with writeFile
.
{{index “createServer function”, “request function”, “event handling”, “readable stream”}}
Readable ((stream))s are a little more involved. The request
argument to the HTTP server’s callback is a readable stream. Reading from a stream is done using event handlers rather than methods.
{{index “on method”, “addEventListener method”}}
Objects that emit events in Node have a method called on
that is similar to the addEventListener
method in the browser. You give it an event name and then a function, and it will register that function to be called whenever the given event occurs.
{{index “createReadStream function”, “data event”, “end event”, “readable stream”}}
Readable ((stream))s have "data"
and "end"
events. The first is fired every time data comes in, and the second is called whenever the stream is at its end. This model is most suited for streaming data that can be immediately processed, even when the whole document isn’t available yet. A file can be read as a readable stream by using the createReadStream
function from node:fs
.
{{index “upcasing server example”, capitalization, “toUpperCase method”}}
This code creates a ((server)) that reads request bodies and streams them back to the client as all-uppercase text:
{{index “Buffer class”, “toString method”}}
The chunk
value passed to the data handler will be a binary Buffer
. We can convert this to a string by decoding it as UTF-8 encoded characters with its toString
method.
The following piece of code, when run with the uppercasing server active, will send a request to that server and write out the response it gets:
{{id file_server}}
A file server
{{index “file server example”, “Node.js”, [HTTP, server]}}
Let’s combine our newfound knowledge about HTTP ((server))s and working with the ((filesystem)) to create a bridge between the two: an HTTP server that allows ((remote access)) to a filesystem. Such a server has all kinds of uses—it allows web applications to store and share data, or it can give a group of people shared access to a bunch of files.
{{index [path, URL], “GET method”, “PUT method”, “DELETE method”, [file, resource]}}
When we treat files as HTTP ((resource))s, the HTTP methods GET
, PUT
, and DELETE
can be used to read, write, and delete the files, respectively. We will interpret the path in the request as the path of the file that the request refers to.
{{index [path, “filesystem”], “relative path”}}
We probably don’t want to share our whole filesystem, so we’ll interpret these paths as starting in the server’s working ((directory)), which is the directory in which it was started. If I ran the server from /tmp/public/
(or C:\tmp\public\
on Windows), then a request for /file.txt
should refer to /tmp/public/file.txt
(or C:\tmp\public\file.txt
).
{{index “file server example”, “Node.js”, “methods object”, “Promise class”}}
We’ll build the program piece by piece, using an object called methods
to store the functions that handle the various HTTP methods. Method handlers are async
functions that get the request object as their argument and return a promise that resolves to an object that describes the response.
{{index “405 (HTTP status code)”}}
This starts a server that just returns 405 error responses, which is the code used to indicate that the server refuses to handle a given method.
{{index “500 (HTTP status code)”, “error handling”, “error response”}}
When a request handler’s promise is rejected, the catch
call translates the error into a response object, if it isn’t one already, so that the server can send back an error response to inform the client that it failed to handle the request.
{{index “200 (HTTP status code)”, “Content-Type header”}}
The status
field of the response description may be omitted, in which case it defaults to 200 (OK). The content type, in the type
property, can also be left off, in which case the response is assumed to be plain text.
{{index “end method”, “pipe method”, stream}}
When the value of body
is a ((readable stream)), it will have a pipe
method that we can use to forward all content from a readable stream to a ((writable stream)). If not, it is assumed to be either null
(no body), a string, or a buffer, and it is passed directly to the ((response))‘s end
method.
{{index [path, URL], “urlPath function”, “URL class”, parsing, [escaping, “in URLs”], “decodeURIComponent function”, “startsWith method”}}
To figure out which file path corresponds to a request URL, the urlPath
function uses the built-in URL
class (which also exists in the browser) to parse the URL. This constructor expects a full URL, not just the part starting with the slash that we get from request.url
, so we give it a dummy domain name to fill in. It extracts its pathname, which will be something like "/file.txt"
, decodes that to get rid of the %20
-style escape codes, and resolves it relative to the program’s working directory.
As soon as you set up a program to accept network requests, you have to start worrying about ((security)). In this case, if we aren’t careful, it is likely that we’ll accidentally expose our whole ((filesystem)) to the network.
File paths are strings in Node. To map such a string to an actual file, there’s a nontrivial amount of interpretation going on. Paths may, for example, include ../
to refer to a parent directory. One obvious source of problems would be requests for paths like /../secret_file
.
{{index “node:path package”, “resolve function”, “cwd function”, “process object”, “403 (HTTP status code)”, “sep binding”, [“backslash character”, “as path separator”], “slash character”}}
To avoid such problems, urlPath
uses the resolve
function from the node:path
module, which resolves relative paths. It then verifies that the result is below the working directory. The process.cwd
function (where cwd
stands for current working directory) can be used to find this working directory. The sep
binding from the node:path
package is the system’s path separator—a backslash on Windows and a forward slash on most other systems. When the path doesn’t start with the base directory, the function throws an error response object, using the HTTP status code indicating that access to the resource is forbidden.
{{index “file server example”, “Node.js”, “GET method”, [file, resource]}}
We’ll set up the GET
method to return a list of files when reading a ((directory)) and to return the file’s content when reading a regular file.
{{index “media type”, “Content-Type header”, “mime-types package”}}
One tricky question is what kind of Content-Type
header we should set when returning a file’s content. Since these files could be anything, our server can’t simply return the same content type for all of them. ((NPM)) can help us again here. The mime-types
package (content type indicators like text/plain
are also called ((MIME type))s) knows the correct type for a large number of ((file extension))s.
{{index “npm program”}}
The following npm
command, in the directory where the server script lives, installs a specific version of mime
:
{{index “404 (HTTP status code)”, “stat function”, [file, resource]}}
When a requested file does not exist, the correct HTTP status code to return is 404. We’ll use the stat
function, which looks up information about a file, to find out both whether the file exists and whether it is a ((directory)).
{{index “createReadStream function”, [“asynchronous programming”, “in Node.js”], “error handling”, “ENOENT (status code)”, “Error type”, inheritance}}
Because it has to touch the disk and thus might take a while, stat
is asynchronous. Since we’re using promises rather than callback style, it has to be imported from node:fs/promises
instead of directly from node:fs
.
When the file does not exist, stat
will throw an error object with a code
property of "ENOENT"
. These somewhat obscure, ((Unix))-inspired codes are how you recognize error types in Node.
{{index “Stats type”, “stat function”, “isDirectory method”}}
The stats
object returned by stat
tells us a number of things about a ((file)), such as its size (size
property) and its ((modification date)) (mtime
property). Here we are interested in the question of whether it is a ((directory)) or a regular file, which the isDirectory
method tells us.
{{index “readdir function”}}
We use readdir
to read the array of files in a ((directory)) and return it to the client. For normal files, we create a readable stream with createReadStream
and return that as the body, along with the content type that the mime
package gives us for the file’s name.
{{index “Node.js”, “file server example”, “DELETE method”, “rmdir function”, “unlink function”}}
The code to handle DELETE
requests is slightly simpler.
{{index “204 (HTTP status code)”, “body (HTTP)”}}
When an ((HTTP)) ((response)) does not contain any data, the status code 204 (“no content”) can be used to indicate this. Since the response to deletion doesn’t need to transmit any information beyond whether the operation succeeded, that is a sensible thing to return here.
{{index idempotence, “error response”}}
You may be wondering why trying to delete a nonexistent file returns a success status code rather than an error. When the file being deleted is not there, you could say that the request’s objective is already fulfilled. The ((HTTP)) standard encourages us to make requests idempotent, which means that making the same request multiple times produces the same result as making it once. In a way, if you try to delete something that’s already gone, the effect you were trying to create has been achieved—the thing is no longer there.
{{index “file server example”, “Node.js”, “PUT method”}}
This is the handler for PUT
requests:
{{index overwriting, “204 (HTTP status code)”, “error event”, “finish event”, “createWriteStream function”, “pipe method”, stream}}
We don’t need to check whether the file exists this time—if it does, we’ll just overwrite it. We again use pipe
to move data from a readable stream to a writable one, in this case from the request to the file. But since pipe
isn’t written to return a promise, we have to write a wrapper, pipeStream
, that creates a promise around the outcome of calling pipe
.
{{index “error event”, “finish event”}}
When something goes wrong when opening the file, createWriteStream
will still return a stream, but that stream will fire an "error"
event. The stream from the request may also fail—for example, if the network goes down. So we wire up both streams’ "error"
events to reject the promise. When pipe
is done, it will close the output stream, which causes it to fire a "finish"
event. That’s the point at which we can successfully resolve the promise (returning nothing).
{{index download, “file server example”, “Node.js”}}
The full script for the server is available at https://eloquentjavascript.net/code/file_server.mjs. You can download that and, after installing its dependencies, run it with Node to start your own file server. And, of course, you can modify and extend it to solve this chapter’s exercises or to experiment.
{{index “body (HTTP)”, “curl program”, [HTTP, client], [method, HTTP]}}
The command line tool curl
, widely available on ((Unix))-like systems (such as macOS and Linux), can be used to make HTTP ((request))s. The following session briefly tests our server. The -X
option is used to set the request’s method, and -d
is used to include a request body.
The first request for file.txt
fails since the file does not exist yet. The PUT
request creates the file, and behold, the next request successfully retrieves it. After deleting it with a DELETE
request, the file is again missing.
Summary
{{index “Node.js”}}
Node is a nice, small system that lets us run JavaScript in a nonbrowser context. It was originally designed for network tasks to play the role of a node in a network, but it lends itself to all kinds of scripting tasks. If writing JavaScript is something you enjoy, automating tasks with Node may work well for you.
NPM provides packages for everything you can think of (and quite a few things you’d probably never think of), and it allows you to fetch and install those packages with the npm
program. Node comes with a number of built-in modules, including the node:fs
module for working with the filesystem and the node:http
module for running HTTP servers.
All input and output in Node is done asynchronously, unless you explicitly use a synchronous variant of a function, such as readFileSync
. Node originally used callbacks for asynchronous functionality, but the node:fs/promises
package provides a promise-based interface to the filesystem.
Exercises
Search tool
{{index grep, “search problem”, “search tool (exercise)”}}
On ((Unix)) systems, there is a command line tool called grep
that can be used to quickly search files for a ((regular expression)).
Write a Node script that can be run from the ((command line)) and acts somewhat like grep
. It treats its first command line argument as a regular expression and treats any further arguments as files to search. It outputs the names of any file whose content matches the regular expression.
When that works, extend it so that when one of the arguments is a ((directory)), it searches through all files in that directory and its subdirectories.
{{index [“asynchronous programming”, “in Node.js”], “synchronous programming”}}
Use asynchronous or synchronous filesystem functions as you see fit. Setting things up so that multiple asynchronous actions are requested at the same time might speed things up a little, but not a huge amount, since most filesystems can read only one thing at a time.
{{hint
{{index “RegExp class”, “search tool (exercise)”}}
Your first command line argument, the ((regular expression)), can be found in process.argv[2]
. The input files come after that. You can use the RegExp
constructor to go from a string to a regular expression object.
{{index “readFileSync function”}}
Doing this synchronously, with readFileSync
, is more straightforward, but if you use node:fs/promises
to get promise-returning functions and write an async
function, the code looks similar.
{{index “stat function”, “statSync function”, “isDirectory method”}}
To figure out whether something is a directory, you can again use stat
(or statSync
) and the stats object’s isDirectory
method.
{{index “readdir function”, “readdirSync function”}}
Exploring a directory is a branching process. You can do it either by using a recursive function or by keeping an array of work (files that still need to be explored). To find the files in a directory, you can call readdir
or readdirSync
. Note the strange capitalization—Node’s filesystem function naming is loosely based on standard Unix functions, such as readdir
, that are all lowercase, but then it adds Sync
with a capital letter.
To go from a filename read with readdir
to a full path name, you have to combine it with the name of the directory, either putting sep
from node:path
between them or using the join
function from that same package.
hint}}
Directory creation
{{index “file server example”, “directory creation (exercise)”, “rmdir function”}}
Though the DELETE
method in our file server is able to delete directories (using rmdir
), the server currently does not provide any way to create a ((directory)).
{{index “MKCOL method”, “mkdir function”}}
Add support for the MKCOL
method (“make collection”), which should create a directory by calling mkdir
from the node:fs
module. MKCOL
is not a widely used HTTP method, but it does exist for this same purpose in the ((WebDAV)) standard, which specifies a set of conventions on top of ((HTTP)) that make it suitable for creating documents.
{{hint
{{index “directory creation (exercise)”, “file server example”, “MKCOL method”, “mkdir function”, idempotency, “400 (HTTP status code)”}}
You can use the function that implements the DELETE
method as a blueprint for the MKCOL
method. When no file is found, try to create a directory with mkdir
. When a directory exists at that path, you can return a 204 response so that directory creation requests are idempotent. If a nondirectory file exists here, return an error code. Code 400 (“bad request”) would be appropriate.
hint}}
A public space on the web
{{index “public space (exercise)”, “file server example”, “Content-Type header”, website}}
Since the file server serves up any kind of file and even includes the right Content-Type
header, you can use it to serve a website. Given that this server allows everybody to delete and replace files, this would make for an interesting kind of website: one that can be modified, improved, and vandalized by everybody who takes the time to make the right HTTP request.
Write a basic ((HTML)) page that includes a simple JavaScript file. Put the files in a directory served by the file server and open them in your browser.
Next, as an advanced exercise or even a ((weekend project)), combine all the knowledge you gained from this book to build a more user-friendly interface for modifying the website—from inside the website.
Use an HTML ((form)) to edit the content of the files that make up the website, allowing the user to update them on the server by using HTTP requests, as described in Chapter ?.
Start by making only a single file editable. Then make it so that the user can select which file to edit. Use the fact that our file server returns lists of files when reading a directory.
{{index overwriting}}
Don’t work directly in the code exposed by the file server, since if you make a mistake, you are likely to damage the files there. Instead, keep your work outside of the publicly accessible directory and copy it there when testing.
{{hint
{{index “file server example”, “textarea (HTML tag)”, “fetch function”, “relative path”, “public space (exercise)”}}
You can create a <textarea>
element to hold the content of the file that is being edited. A GET
request, using fetch
, can retrieve the current content of the file. You can use relative URLs like index.html, instead of http://localhost:8000/index.html, to refer to files on the same server as the running script.
{{index “form (HTML tag)”, “submit event”, “PUT method”}}
Then, when the user clicks a button (you can use a <form>
element and "submit"
event), make a PUT
request to the same URL, with the content of the <textarea>
as the request body, to save the file.
{{index “select (HTML tag)”, “option (HTML tag)”, “change event”}}
You can then add a <select>
element that contains all the files in the server’s top ((directory)) by adding <option>
elements containing the lines returned by a GET
request to the URL /
. When the user selects another file (a "change"
event on the field), the script must fetch and display that file. When saving a file, use the currently selected filename.
hint}}